Kinarm | Interactive Robotics Brain Injury Research

  • Products
  • Clinical Applications
  • News
  • Support
  • About Us
  • Contact

Mobile nav

What is a Kinarm Lab?

What is a Kinarm Lab?

default
Basic Research
default
Clinical Research
default
Why The Upper Limb?
 

Kinarm Labs are the most advanced and flexible robotic platforms for undertaking sensory, motor and cognitive research. For over 15 years, Kinarm Labs have been trusted research tools. Our customers have confidence in their research results.

Kinarm Labs are designed by neuroscientists for neuroscientists; we understand your needs.

 

Kinarm was invented by Dr. Stephen Scott of Queen’s University at Kingston as a tool to study upper-limb voluntary motor control and specifically the difficulty of quantifying and manipulating the mechanics of multi-joint motion in the NHP while simultaneously recording neural function (Scott, 1999).  Scott extended the design to a human-sized version providing further insight on motor learning (e.g. Singh and Scott, 2003).  He then modified the system to a make it more clinically-friendly and include two robots, one for each limb (Nozaki et al., 2006).

This technology has been influential in uncovering many novel aspects of voluntary motor control. Scott’s LIMB Lab has an extensive publication list with over a dozen Nature series publications (Scott et al., 2001; Gribble and Scott, 2002; Singh and Scott, 2003; Kurtzer et al., 2005; Nozaki et al., 2006; Pruszynski et al, 2011; Crevecoeur et al., 2014).  Others such as Hatsopoulos Lab (Rubino et al., 2006), Carmena Lab (Gangully et al., 2011), Bastian Lab (Bhanpuri, et al., 2014) and Gomi Lab (Ueda et al, 2019 )have had similar success.  Scott is currently focused on optimal feedback control (OFC) as a theory of voluntary control (Todorov and Jordan, 2002).  He has been one of the leaders in the field articulating the importance and impact of this new theory, particularly its implications on the neural basis of control (Scott, 2016; Scott, 2004).

Kinarm Labs are highly flexible platforms that enable researchers to develop and implement their own custom experimental paradigm to address leading questions in neuroscience, such as:

• Coordination of multi-joint and multi-limb motor actions with or without joint-based loads
• Learning in altered visual and mechanical environments
• Solving complex cognitive problems
• Perceptual aspects of proprioception and body image
• Enabling readout of brain-machine interfaces to support neuroprosthetic design
 
Some of the experimental paradigms implemented by Kinarm users include:
• Dissociation of visual and mechanical worlds (e.g. visuomotor rotation task)
• Force Channel (Kinarm End-Point only)
• Multiple simultaneous loads (e.g. force-field + perturbation)
• Complex visual stimuli, static and dynamic
 
 
 

Kinarm labs equipped with Kinarm Standard Tests are a robust research platform for detecting and quantifying impairments from acquired brain injury and disease. We provide precision assessment to support personalized medicine. 

bkin-brain-circuits

Using advanced technologies, such as robotics, BKIN has created the most advanced labs for measuring human behavior – a method we call behaviorography™.  Behaviour is measured objectively by a robot, rather than relying solely on a clinician’s perception and interpretation of an impairment.

 

During a KINARM Standard Test, a subject sits in a chair with robotic arms affixed (KINARM Exoskeleton Lab) or grasps two robotic manipulandums (KINARM End-Point Lab).

The subject is instructed to perform a behaviour, or task, such as directing a hand to a target, or interacting with an object in the environment. During the task, the subject will interact with the robotic device and view visual stimuli in a virtual reality environment. While the subject performs the behaviour, the device precisely tracks, measures and records every arm movement, providing support or resistance as needed.

After the task is completed (in 2-4 minutes), BKIN’s proprietary software, Dexterit-E, completes a detailed analysis of the behaviour, comparing the subject’s behaviour to age, sex and handedness-matched control population. The kinematic and performance analysis is summarized on a report.

Disclaimer: Kinarm Standard Tests are intended as research tools to contribute to the understanding of brain function and dysfunction. Kinarm Standard Tests do not directly offer a medical diagnosis of any type, nor are Kinarm Standard Tests to be used as an assessment tool to assist with diagnosis. A diagnosis of any brain injury or disease can be made only by a qualified physician or psychologist.

Our goal is to develop objective and quantitative measures of brain function that:

  • overcome the limitations of existing clinical assessments; and
  • enable the development and validation of patient-specific therapies for persons suffering from brain injury and disease.

Kinarm Labs allow clinical researchers to:

Differentiate:

Identify subject-specific behavioral measures that uniquely characterize the subject’s neurological deficit

Target:

Design new patient-centered therapies to address the patient-specific impairment of the brain injury or disease

Advance:

Translate treatments for brain injury from lab to clinic
Science stands behind every test

Select:

Identify subjects for research protocols based on their deficit profile

Measure:

Collect objective data on the subject’s response to therapies

 

Clinical Research on Brain Health

• Quantify motor, sensory and cognitive deficits associated with a neurological disorder
• Identify novel biomarkers for clinical assessment
• Quantify patient performance for novel rehabilitation strategies

 
 

All Kinarm Labs rely on the common principle that the upper limb can give a wealth of information about the function of the brain. But how do we know this? Over the last 40 years, our understanding of how the brain supports sensory, motor, and cognitive function has substantially increased due to availability of advanced technologies, such as robotics. Behavioural studies on humans have identified how we use sensory input to the brain to perceive the world around us, make decisions, and guide our highly skilled and flexible motor actions. Many of these studies have used the upper limb as a model to test their hypotheses, for example:

By permission: Nature Review Neurosci (2004 Jul;5(7):532-46)

  •  sensory and motor systems work together to permit us to move and interact in the environment and create our perception of the world;
  • a given function is supported by a highly distributed network in the brain; and
  • the ability to perform sensory, motor, and cognitive functions requires substantial learning so that brain processing is highly plastic and altered by experience. (Scott et al, 2011).

Many publications are available that elucidate these three key findings.
Given the breadth of sensory and motor processes now studied, it is well-recognized that numerous neurological diseases and injuries will disrupt the complex network that moves the upper limb and that such disruption can now be quantified with the assistance of robotics. With Kinarm Labs, the possibility now exists to identify sensitive biomarkers of healthy performance against which impairments can be identified.

For example, a motor function such as point-to-point movement evaluation is currently evaluated by the clinician asking the patient to touch his finger and their nose repeatedly and scored 0, 1 or 2. In the Kinarm lab this motor function is evaluated by first quantifying the behaviour of a healthy subject with kinematic variables such as reaction time, speed differences between limbs and direction errors, and then assembling a large normative database of age-matched controls. The impaired subject performs the same task and their performance is then compared. The parameter is identified if performance is beyond the 5-95 confidence interval (Coderre, et al., 2010). This paradigm has been repeated in numerous behavioural tasks by Scott and others, and has enabled BKIN to develop Kinarm Standard Tests.

 

Learn more about Kinarm Labs Capabilities & Technical Specifications

LEARN MORE
 

Products

  • Kinarm Exoskeleton Lab
  • Kinarm End-Point Lab
  • Kinarm Standard Tests
  • Dexterit-E
  • Dexterit-E Explorer
  • NHP Kinarm Exoskeleton Lab

Products

  • Platform Comparison
  • Kinarm Exoskeleton Lab
  • Kinarm End-Point Lab
  • Kinarm Standard Tests
  • Dexterit-E
  • Dexterit-E Explorer
  • NHP Kinarm Exoskeleton Lab

Clinical Applications

  • Clinical Applications
    • Stroke and TIA
    • Traumatic Brain Injury (TBI)
    • Neurological Disease
    • Pediatric
    • Primarily Non-Neurological
  • Clinical Research Sites
  • Publications

News

  • Kinarm News
  • Events
    • Neuroscience
    • Kinarm Camp
  • Product Notices
  • @KinarmLab Twitter Feed
  • Open Jobs

Support

  • Kinarm Help & Support
  • User Guides & Documentation
  • Software Downloads
  • Installing & Maintaining Your Kinarm Lab
  • Training Videos
  • New User Training
  • Creating Custom Tasks
  • Sample Custom Tasks
  • Q&A Forum

About Us

  • About Us
  • Our People
  • Quality
  • Supplier Requirements
  • End-User License Agreement
  • Intellectual Property
  • Privacy & Terms

Contact

  • Contact Kinarm
    • International Sales Agents
  • Request an Account
footer-logo

140 Railway St. Kingston, ON K7K 2L9 Canada Toll Free: (888) 533-4393 Phone: (613) 507-4393 info@kinarm.com

© Copyright BKIN Technologies. All Rights Reserved

Quality | Privacy Policy | Web design/development by 1dea Design + Media Inc.